The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.
نویسندگان
چکیده
Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.
منابع مشابه
Sulfur dioxide emissions in Iran and environmental impacts of sulfur recovery plant in Tabriz Oil Refinery
Background: Combustion of fossil fuels contributes to sulfur dioxide (SO2) emissions. To deal with this issue, the government of Iran has appointed the oil refineries to upgrade their installations and produce high quality fuels. Thus, this study investigated the status of SO2 emissions in Iran and the capability of advanced technologies to control SO2 emissions. Methods: The status of SO2 em...
متن کاملWill We Ever Stop Using Fossil Fuels?
F ossil fuels provide substantial economic benefits, but in recent decades, a series of concerns have arisen about their environmental costs. In the United States, for example, the Clean Air Act in 1970 and 1977 addressed concerns over the emissions of so-called conventional pollutions, notably airborne particulate matter, by imposing fuel economy standards on vehicles and regulations to reduce...
متن کاملModeling of sulfur dioxide emissions in Ahvaz City, southwest of Iran during 2013
Sulfur dioxide has two important sources in the atmosphere and this is why most of scientists believe in a geographic split in the globe. Power plants, major emitter of SO2, are located in north hemisphere such as in Russia, China, Canada and the USA. In south hemisphere, phytoplankton produces a massive amount of dimethyl sulfide (DMS) and dimethyl disulfide (DMDS). Then these types of reduced...
متن کاملCarcinogenicity of airborne fine particulate benzo(a)pyrene: an appraisal of the evidence and the need for control.
Benzo(a)pyrene(BaP) originating from fossil fuel and other organic combustion processes is largely adsorbed on fine particulate and hence is a widespread atmospheric pollutant. Available emissions and air quality data are based on the total weight of particulate matter without reference to size and give little information on trends and concentrations of fine particulate BaP. Greater reliance on...
متن کاملComment on "Life-cycle analysis of alternative automobile fuel/propulsion technologies".
We examine the economic and environmental implications of the fuels and propulsion technologies that will be available over the next two decades for powering a large proportion of the light duty fleet (cars and light trucks). Since R&D change is rapid, we treat the uncertainty about future technologies using bounding calculations. A lifecycle perspective is used to analyze fossil fuels [convent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 44 شماره
صفحات -
تاریخ انتشار 2015